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Abstract: Tissue engineering is known to encompass multiple aspects of science, medicine and
engineering. The development of systems which are able to promote the growth of new cells and
tissue components are vital in the treatment of severe tissue injury and damage. This can be done
through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted
scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage
of this is also discussed. Biopolymers, those which have a natural original, have been particularly
advantageous in tissue engineering systems as they are often found within the extracellular matrix
of the human body. The utilization of biopolymers has become increasing popular as they are
biocompatible, biodegradable and do not illicit an immune response when placed into the body.
Tissue engineering systems for use with the eye are also discussed. This is of particular interest as
the eye is known as an immune privileged site resulting in an extremely limited ability for natural
cell regeneration.

Keywords: tissue engineering; biomaterials; natural polymers; cell regeneration

1. Introduction

Tissue engineering is a field of medical research that allows for the rebuilding and
repairing of damaged tissues within the body. It encompasses a number of different aspects
of science, including cell biology, engineering and medicine to formulate systems which are
able to aid in the growth of new cells and tissues [1]. These systems have been investigated
for almost every tissue in the human body, ranging from bone tissues, to cartilage and
various components of the eye. For example, polymeric scaffolds have been shown to be
a viable alternative to conventional grafts in the field of bone tissue engineering. These
constructs (both those containing cells and those which don’t contain cells) are able to
facilitate the required processes in bone regeneration [2].

One of the primary treatments for the severe tissue damage has been the use of either
autogenous or allogeneic grafts. However, this treatment has its disadvantages including
sourcing of the grafts, adverse immune responses and high cost. This opens the door for
systems which are able to mimic the extracellular matrix and encourage the regrowth of
cells and do not have these drawbacks. This has led to the investigation of systems such as
the hydrogels and scaffolds which will be discussed throughout this article [3].

Due to the fact that tissue engineering can be used for so many different tissue and
cell types, there are a variety of techniques and processes which can be employed in
formulating these systems. For example, the physical design of the system can include
(or be a combination of) hydrogels and 3D or bio-printed scaffolds. These systems need
to be able to mimic the environment of the natural tissues of the body. In addition to
this, the biochemical function of the systems can entail the delivery of biological signaling
molecules, the delivery of new cells to the tissue, or simply a scaffold upon to which the
body can naturally produce new cells [4].
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When it comes to the delivery of cells to a damaged site, the methods that are currently
used can be divided into two; to culture cells in vitro before they are implanted into the
body as artificial tissue or to insert a graft (either laden with cells or without). The insertion
of cells is complicated and has a high infection risk. It is also very costly compared to the
insertion of a scaffold [5].

The very crux of tissue engineering is to create an environment adequate for the
proliferation of new cells. One of the best ways to do this is to recreate the natural
environment in which the cells normally grow. The extracellular matrix is the noncellular
component of tissues which is responsible for structural support as well as the transport
of biochemical cues. It also contains a variety of growth factors and cytokines which
play a great role in the proliferation of cells. Decellularized extracellular matrix refers to
matrix which has undergone procedures in order to remove all cellular components. The
incorporation of this biomaterial into tissue engineering systems provides an environment
which can support cell growth and viability while not producing the immune response
which is commonly seen with transplanted tissues [6].

There are many important factors that need to be considered when designing a
system for tissue engineering purposes; one of the most important is that the system be
biodegradable so that the growing tissue is able to replace it as it degrades. Other factors
which need to be considered include the mechanical properties, morphology and porosity
of the scaffold. The ideal properties of tissue engineering scaffolds vary depending on
the site into which it is going to be placed. The scaffolds must be mechanically strong
enough to withstand being handled by surgeons during implantation as well as to be able
to support the growth of cells and the movement of tissues. The flexibility of the scaffold
may differ slightly; scaffolds placed into a bone would require less flexibility than that
placed into soft tissue [7].

Biomaterials and natural polymers are a favourable option in these systems as many
of them are inherently biocompatible and biodegradable [8]. Polymeric systems are able to
replicate the extracellular matrix and allow for cell proliferation. For example, hydrogels
are able to be administered to a damaged cartilage site and, not only alleviate the pain
temporarily but also encourage neocartilage regeneration [9].

Tissue engineering systems are used in almost every type of tissue in the human body.
Throughout this review, studies will be discussed which highlight systems which are being
developed to treat damage to, among others, bone, cartilage, neural, ocular and skin tissues.
Of particular importance is the development of neurological systems. There are a number
of conditions (ranging from physical trauma to degenerative diseases) which lead to a
loss of function within the brain and nervous system. Currently, the primary treatment
strategies are only able to treat the symptoms of these conditions or slow the degenerative
process. Tissue regenerative strategies are able to offer patients the possibility of long-term
solutions [10].

2. Biofabrication Strategies for Tissue Engineering

The science behind tissue engineering systems is multifaceted and often dependent
on the requirements of the tissues into which the system is being placed. Methods that are
used in tissue engineering systems can be divided into many different strategies. These
include the injection of cells that have been obtained from the patient into the damaged
site, the administration of biomolecules such as growth factors or lyophilized cell fractions
which are able to send cues to the patient’s own cells or the use of various matrices. These
matrices include hydrogels and 3D structures (referred to as scaffolds) which mimic the
extracellular matrix and can be used in conjunction with cells and biomolecules [11].

The design of a system is largely dependent on the tissues into which is going to be
placed. Table 1 highlights some of properties that need to be taken into consideration [12].



Molecules 2021, 26, 2518 3 of 23

Table 1. Outline of the properties to be considered when tissue engineering systems for
regenerative medicine.

Properties Design Considerations

Biocompatibility
The compatibility of a scaffold with the cells is of paramount

importance. The scaffold should not illicit an immune
response when inserted into the body.

Biodegradability The ability of a scaffold to be biodegraded either through
enzymatic or hydrolytic action is advantageous.

Electrical conductivity
Scaffolds which are conductive are able to influence the

behavior of cells as a response to the electrical signals present
in cell signaling.

Morphology

The morphology of the scaffold is vitality important as it
impacts how the cells interact with the scaffold. The porosity
of the scaffold ensures that cell infiltration can occur as well as

the transfer of nutrients through the system.

Mechanical characteristics

This refers to characteristics such as the stiffness, elasticity
and relaxation modulus of the scaffold. These influence cell
behavior as well as the ability of the scaffold to mimic the

natural microenvironment.

Ease of manufacturing
The cost of manufacturing, ease of the processes and the

storage requirements are all factors which must be considered
if the scaffold is to be produced on a large scale.

It is important to keep in mind that these systems can be used in conjunction with one
other. For example, as is demonstrated in many of the below studies, hydrogels can be
utilized as a scaffold on their own or they can be further developed in into a bio-ink.

2.1. Hydrogels

A hydrogel refers to a system which is made of a network of hydrophilic polymeric
materials that are able to interact with water without dissolving. These systems are useful
in many biomedical applications, including drug delivery and tissue regeneration, for a
number of reasons; the primary one being that they are largely biocompatible [13]. Due
to the high level of hydrophilicity of hydrogels, they are able to very closely mimic the
structural properties of the extracellular matrix in such a way that they are able to create
an ideal environment for new cell growth. These cells are then in turn able to secrete new
extracellular matrix. In addition to this, injectable hydrogels are able to be administered to
the damaged site with minimally invasive techniques [14].

Despite these benefits, hydrogels are known to have poor mechanical strength, which
can sometimes pose a challenge to researchers when developing systems for tissue engi-
neering purposes [13]. The stiffness of the hydrogel plays an important role in the way it
interacts with the tissues surrounding it and can affect the cell proliferation, differentiation,
and adhesion. It is vital that this factor is optimized in order for the system to be as effective
as possible [15]. In addition to adjusting the stiffness and mechanical properties of the
hydrogel, other parameters are able to be finetuned in order to optimize the system. These
include the degradation rate and the release kinetics of the substances within the hydrogel.
An example of a method to optimize a hydrogel system in terms of its mechanical strength
is by incorporating a second polymer into the network. This may be as an independent
network, known as an interpenetrating network, whereby two or more polymer networks
are present but are not covalently bonded to each other [16].

An example of such a system was developed by Saravanan et al., using chitosan,
glycerophosphate and graphine oxide. Although chitosan has been used in many hydrogel
systems, the researchers noted significant improvement in the physico-chemical properties
of the hydrogel with the addition of graphine oxide. The system was able to support and
promote differentiation of mesenchymal stem cells, making it viable option for bone tissue
engineering purposes [17].
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Some hydrogel systems are able to be designed to react to certain stimuli within
the body. One of the most common stimuli-responsive hydrogels is those which are
temperature sensitive. These, known as a thermosensitive hydrogel, are systems which are a
liquid solution at a low temperature and undergoes the gelation process as the temperature
is increased. These are beneficial for medical applications as they are able to be formulated
to gel at body temperature. This allows for a hydrogel to be injected into damaged
tissue sites as a liquid affording the hydrogel the ability to diffuse effectively through
the tissue and fit within irregular tissue defects before it becomes a gel. In addition to
this, thermosensitive hydrogels are able facilitate desirable diffusion of precursor elements
through the system [18].

Yin et al., developed a thermosensitive hydrogel which was formulated using pluronic
(P123) modified with butyl diisocyanate (BDI) and collagen (BC hydrogel) and seeded with
tendon stem/progenitor cells for the purpose of tendon tissue engineering. The hydrogel
had a sol-gel transition at 25 ◦C. The addition of collagen to the BDI hydrogel greatly
improved its ability to support cells (pure BDI hydrogels have been shown to not support
cell proliferation in a number of different cell lines) [19].

One of the challenges that face patients with tissue damage is the invasive procedure
that is needed in order to insert tissue engineering scaffolds. Hydrogels, specifically those
which are able to form in situ, are able to be injected which is much less invasive and
therefore less uncomfortable for the patient. Sargeant et al., developed such a system
with poly (ethylene glycol) (PEG) and collagen. The collagen allows for improved cellular
adhesion and enzymatic degradation, where the PEG allows for hydrolytic degradation. In
addition to this, it was found that a number of the characteristics, such as the mechanical
strength, swelling and degradation profiles, were tunable. This illustrates just how ad-
justable hydrogel systems are and highlights that they are able to be formulated according
to the specific requirements of each tissue site [20].

2.2. 3D Scaffolds

A second option for designing a tissue engineering system is a 3D scaffold. These
scaffolds are intended to replicate the extracellular matrix while also providing structural
support and allowing for the proliferation of cells [21].

When designing a solid 3D system, there are a number of factors and functions
which need to be taken into account. These include promoting sufficient cell adhesion and
regeneration, encouraging the transportation of substances such as nutrients and regulatory
factors which are vital for cell survival and differentiation, degradation at a rate which
equal to the rate at which the new cells are grown and to accomplish these factors without
causing an inflammatory response [22].

3D printing of scaffolds has become a popular method of developing these systems as
the resulting scaffold can be designed with a high level of complexity [21]. In the process
of 3D printing, a solution (known as an ink) which contains a combination of substances
including polymer, biochemicals and/or living cells, is placed in a layer-by-layer style
in order to build up the scaffold. This is a particularly complex technique used in tissue
engineering as not only do the inks used have to be able to emulate the micro-architecture
found in the extra-cellular matrix, but they also have to be able to adapt from a liquid
(when it is loaded into the printer as an ink) to a solid scaffold once it has been printed [23].

3D printed scaffolds provide a surface for the proliferation and regeneration of cells.
In order for this to happen, these scaffolds need to have a structure which is very porous,
with pores of a correct size to allow for the cells to infiltrate it adequately. The materials
used in 3D printed scaffolds have to satisfy a number of parameters, not only do they
need be biocompatible and able to allow of cell proliferation, they also need to be able
to prepared in such a way that 3D printing is possible. This makes this form of tissue
engineering systems particularly challenging [24].

The variety of possibilities and ability to ‘customize’ 3D printed systems gives re-
searchers so many options when developing a scaffold for a specific tissue site. These range
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from the individual characteristics of different biomaterials to the structural possibilities
of the 3D printing process. In a study by Boga et al., a cylindrical scaffold was developed
with tricalcium phosphate, a bioceramic, and alginic acid and functionalized with graphine
oxide, intended for use as a bone tissue engineering system. The design of the scaffold was
created using computer-assisted software, with two different types of layers so that each
would structurally support the next. As each layer was printed the scaffold was rotated 45◦.
This allowed for the creation of an interconnected pore network, with pores distributed
evenly throughout the scaffold, while simultaneously keeping the mechanical strength
intact. The results showed that the inclusion of graphine oxide had a number of beneficial
affects; improved swelling profiles, increased porosity and improved mechanical strength.
The 3D structure provides a surface onto which cells can adhere and proliferate. Scaffolds
such as the one shown in this study provide an avenue to greatly improve the technology
currently used in bone tissue engineering [25].

It is possible for systems to combine the benefits of a hydrogel with a 3D printed
design. This was illustrated by Kilic and Hasirci et al., whereby a 3D printed methacrylated
gelatin hydrogel was loaded with stromal keratocyte cells and printed utilizing a pneumatic
extrusion based bioprinter. The design of the scaffold was created to mimic the corneal
stroma by layering parallel fibres with a 90◦ difference between the layers. Through the
mechanical strength of the bioprinted scaffold, coupled with the high cell viability of the
hydrogel, the system is a viable alternative to allogenic grafts [26].

2.3. 3D Bioprinting

3D bioprinting, which refers to the use of inks which contain cells, is a type of 3D
printing which is of particular interest in terms of tissue engineering. There are a number
of different techniques which can be employed in 3D bioprinting formulations. The first
of which is inkjet-based printing. This technique places small droplets of the bioink onto
a substrate, either in a continuous stream or on a “drop-on-demand” basis. The second
technique is extrusion based, where the ink is loaded into a syringe and forced out of
through a nozzle, creating a continuous filament without the creation of droplets. Extrusion
based printing requires the ink to be highly viscous whilst still being able to flow out of the
syringe without the presence of an elevated temperature. The third technique, known as
laser-based or orifice-free printing, involves the use of a laser to guide the placement of the
ink onto the substrate [27].

There are four of the common types of bioinks. These are primarily classified by the
method through which they undergo the transition from a liquid to a solid or a gel. The first
is through ionic crosslinking where the ink is printed directly into a crosslinking solution.
The second is a bioink which is susceptible to changes in temperatures, it is a liquid at
a higher temperature (within the syringe) and becomes a gel once it comes into contact
with the platform which is a cooler temperature. Photosensitive bioinks react once they are
exposed to UV-light. The last common bioink are those which undergo gelation due to the
shear-thinning forces that it undergoes whilst printing. These bioinks are illustrated in the
figure below (Figure 1) [28].
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Figure 1. Illustrate above are the four common types of bioink. These undergo a transition from
a liquid to a solid or gel as a response to either (A) an ionic crosslinking agent, (B) a change a
temperature, (C) exposure to UV-light or (D) shear-thinning forces [28].

Lee et al., developed a 3D bioprinted system to mimic human skin whereby ker-
atinocytes and fibroblasts are able to represent the epidermis and dermis. The system
was comprised of a collagen hydrogel ink which was printed in a layer-by-layer design,
alternating with the printing of cells. The final structure was made up of eight printed
collagen layers. The fibroblast layers were printed after every two layers of collagen (three
layers in total) and two layers of keratinocytes were printed on top of the last layer of
collagen in order to replicate the cell density of the epidermis. The 3D printed system
was tested against manually fabricated tissue samples with positive results. The printed
system was able to maintain its shape, structure and physical dimension more effectively.
This research showed that the 3D printing of skin tissues allows for improved control over
the cell location as opposed to the traditional manual deposition method and is a feasible
method for the creation and reconstruction of skin tissues [29].

2.4. Nano-Enabled Systems

A third avenue available to scientists when developing tissue engineering structures
is through nanotechnology. Nanotechnology, which refers to structures and systems that
fall within the nanometer scale, have gained much attention in recent years within the
medical field. Researchers have found that the utilization of nanotechnology (including
structures such as nanoparticles, nanofibers and nanowires) can greatly improve diagnostic
capabilities, targeted drug delivery as well as tissue regeneration [30].

Nanotechnologies provide a particular benefit to tissue engineering systems (specif-
ically bone tissue engineering) as they have a high surface to volume ratio allowing for
improved tissue formation. However, bone tissue engineering system often require extra
modification in order to be able to exhibit the necessary mechanical strength. This can be
achieved using methods such as an apatite coating or the inclusion of titanium oxide [31,32].
Nanofiber scaffolds have adequate porosity throughout which allows for the infiltration of
new cells while also possessing sufficient mechanical strength. The most promising and
widely studied technique for producing nanofiber scaffolds is through electrospinning.
This technique is able to produce nanofiber scaffolds from a variety of materials, including
polymers and biomaterials. Researchers are also able to finetune certain characteristics of
the resulting scaffold such as the fiber diameter and the surface morphology depending on
the requirements of the tissue [33]. In addition to this, nanofibers are able to closely mimic
the size of extracellular matrix proteins which are sized between 50 to 500 nanometers in
diameter [34].
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There are three components which are required for the process of electrospinning,
namely a polymer source, a voltage supply and a collector. The polymer solution is
dispensed through a needle at a specific rate. When a high voltage is applied to the
resulting droplet, the resulting electrical field overcomes the cohesive forces which are
present in the solution, primarily in the form of surface tension. This then leads to a constant
stream of polymer solution which is attracted to the collector. In the space between the
needle and the collector, the solvent evaporates which causes the polymer to solidify in
long fibers on the collector [35]. This process is depicted in the figure below (Figure 2).

Figure 2. The setup of the process of electrospinning is depicted here. An electrical current is applied
as the polymer solution exits the syringe at a steady rate set by the syringe pump. The resultant
nanofibers are collected on the rotating collection drum [36].

In addition to the physiological benefits that nanofibrous scaffolds have with regards
to cell regeneration, these systems are also able to deliver substances such as growth
factors. These growth factors are vital for the stimulation of cell differentiation as well
as extracellular matrix secretion. The delivery of growth factors cannot be done in a
bolus fashion as they are readily broken down through enzymatic activity and are rapidly
diffused from the site. Yang et al., developed a core-loaded nanofibrous system through
emulsion electrospinning in order to deliver the growth factors on a continuous basis which
allowed for improved wound healing [37].

A study by Sadeghi et al., was performed to investigate the utilization of a nanofibrous
scaffold for the purpose of neural tissue engineering. The nanofibers were comprised of
poly(ε-caprolactone) (PCL), chitosan and polypyrrole (PPy) and were formed through
electrospinning. While the synthetic polymers, PCL and polypyrrole, offer characteristics
such as PCLs ability to form fine fibers with the desired morphology and topography
and PPys conductivity, the addition of chitosan was shown to be vital to improve the
hydrophilicity (which is vital to the behaviour of the cells within the scaffold such as cell
adhesion) and stability of the system as well as reduce the diameter of the fibers. This was
illustrated through PC12 cell line and MTT assays. The samples which contained chitosan
showed an 8.67-fold increase in the proliferation of the cells in comparison to that of pure
PCL samples. These positive results illustrate not only the importance of the inclusion of
biomaterials in these systems but also that nanofibrous scaffolds are a viable option for
nerve tissue engineering [38].

The properties of nanofibers (such as the morphology) as well as the solution (such
as the spinnability) are able to be optimized during formulation. This can be achieved by
either adjusting the polymer solution concentrations or through the manufacturing process.
This can be seen in a study by Wang et al., whereby nanofibers were formulated through
electrospinning comprised on gelatin and pullulan (a microbial polysaccharide) for consid-
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eration as a tissue engineering scaffold [39]. In this study, the effect of a change in gelatin
content on the properties of the solution and the resultant nanofibers was investigated.
Pullulan was added to the solution as aqueous gelatin solution cannot be electrospun at
room temperature. Solutions were formulated with a variety of concentrations (ranging
from 20% to 25% w/v) and with different weight ratios of gelatin to pullunan (25/75, 33/67,
40/60, and 50/50).

The results showed that the viscosity of the solution increased as the weight ratio of
gelatin increased. In addition to this it was noted that although the average diameter of
the nanofibers increased as the solution concentration increased (from 188 nm in the 20%
w/v sample to 282 nm in the 25% w/v sample) and the average diameter decreased as
the gelatin content increased within the same solution concentrations. Through scanning
electron microscopy (SEM) images seen in Figure 3, the changes in the diameter of the
nanofibers can be seen as well as graphs showing the average diameter of each solution.
This study highlights how adjustments in polymer solution can impact the optimization of
nanofibers intended for use in tissue engineering [39].

Figure 3. The SEM images of the resulting nanofibers as well as graphs of the average diameters are
shown above. All the resultant nanofibers were bead-free. The concentrations (w/v) and mass ratios
(chitosan/pullulan) of the solutions were as follows; (a) 20%, 25/75, (b) 25%, 25/75, (c) 25%, 33/67,
(d) 25%, 40/60, (e) 25%, 50/50 [39].
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Other nanotechnologies have also been used in tissue engineering formulations. One
such technology is nanoparticles. In a study by Heo et al., a system was developed which
illustrates how nanotechnology, hydrogel, and 3D printing can be used in conjunction
with each other to produce a bone tissue regeneration system. A hydrogel was formulated
using gelatin was used to reinforce a 3D printed microstructure composed of polylactic
acid, a biodegradable thermoplastic, and produced using fused deposition modelling. The
hydrogel was loaded with bioactive gold nanoparticles which reinforced the mechanical
strength of the hydrogel. Through in vitro testing using human adipose-derived stem
cells, it was shown that the cells remained viable within the hydrogel and were able to
promote the proliferation of cells as well as the expression of osteogenic specific markers.
This proves that this composite system may provide an avenue for improved bone tissue
engineering [40].

3. The Utilization of Biopolymers in Tissue Regeneration Systems

Biopolymers have been extensively used in a number of medical and pharmaceutical
applications, including drug delivery and tissue engineering. These materials originate
from natural resources, as will be discussed below. These natural polymers can be used
either on their own or in combination, with both other natural polymers and/or synthetic
polymers. The addition of biopolymers to synthetic polymer systems increases the cell
seeding efficiency as well as improves the hydrophobicity challenges seen with synthetic
polymers [41].

In terms of tissue engineering, the selection of the materials used to formulate a system
is a vital step. Not only does the architecture, including the topography, of the scaffold
modify how the cells interact with the system, so does the materials which are chosen.
This has been demonstrated in cartilage tissue engineering whereby different materials
resulted in different levels of tissue formation [42]. Some of the biopolymers which are
used in various medical fields are found naturally within the body. This contributes greatly
to the biocompatibility of these polymers. Examples of polymers which occur within the
human body include collagen and hyaluronic acid, both of which are found within the
extracellular matrix of connective tissues [43].

3.1. Dextran

One of the sources used to obtain biopolymers is bacteria. Dextran, for example, is
formulated from sucrose by lactic-acid bacterial species such as Leuconostoc mesenteroides.
It has properties which lends it to use in pharmaceutical applications; it is highly water
soluble, biocompatible, biodegradable and does not illicit an immune response when
placed into the body. This makes dextran favourable when considering materials for tissue
engineering scaffolds [44].

It was utilized in a system designed by Pan et al., in conjunction with gelatin to form a
hydrogel with possible applications for cartilage tissue engineering [45]. The hydrogel was
comprised of oxidized dextran and modified gelatin. The modifications were made to the
biopolymers due to the fact that they do not possess the mechanical strength to withstand
the force and load which is placed on cartilage joints. Researchers were also able to finetune
the properties of the system to mimic the cartilage due to these modifications. The hydrogel
was tested for cell viability using synovium-derived mesenchymal cells, a progenitor
cell which are able to differentiate into chondrocytes. These cells were also loaded into
hydrogels along with TGF-β3, a growth protein, and used in an animal testing model. The
results showed that the dextran-gelatin hydrogel was able to support the growth of new
cells as well as allow the mesenchymal cells to successfully differentiate [45].

3.2. Chitosan

Chitosan, a derivative of chitin, is one of the most abundantly available biomaterials
for application in a variety of fields, including drug delivery and tissue engineering. It is
able to lends itself to so many applications because it is biocompatible and biodegradable,
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offers mechanical strength to a formulation and is a cost-effective material [46]. This natural
polymer is an amino polysaccharide which is derived from chitin by de-acetylation. Factors
such as the degree of de-acetylation and the molecular weight have an impact on chitosan’s
physicochemical properties. In addition to being biocompatible and biodegradable, it has
antimicrobial, antioxidant and haemostatic properties [47].

Chitosan is favourable for application in tissue engineering as it provides a mechanical
structure which closely mimics the extra-cellular matrix. Researchers are also able to modify
both the pore size within the scaffold as well as the rate at which it degrades, allowing
for adequate tissue integration within the scaffold. It is for these reasons that chitosan,
both on its own and in conjunction with other biomaterials, has been formulated for the
engineering of a variety of different tissues [48].

In a study performed by Dong et al., benefits of the addition of chitosan to a syn-
thetic polymer system was shown [41]. In this study, a chitosan hydrogel was added to
a 3D printed poly(ε-caprolactone) scaffold. The results, using rabbit bone mesenchymal
stem cells as well as a growth factor, showed that the scaffold which contained the chi-
tosan hydrogel had better cell retention and proliferation than the scaffolds without. It
also had good mechanical strength, making the system a good candidate for bone tissue
engineering [41].

One of the most commonly used agents from the crosslinking of chitosan in tripolyphos-
phate polyanion (TPP). In a study by Silvestro et al., the optimal crosslinking conditions
between chitosan and TPP, as well as the effect on the physico-chemical properties of the
resulting scaffolds were investigated [49]. This is important as the porosity of a scaffold as
well as the pore size play a vital role in cell adhesion and proliferation. The pores need to
be within a suitable size range for successful interaction with cells. Scaffolds were prepared
with different concentrations of chitosan (1 and 2% w/v) and TPP (1 and 2% w/v) as well as
varying reaction times for crosslinking (2, 4, and 8 h) in order to optimize the formulation
conditions. The figure below (Figure 4) shows the scanning electron microscopy (SEM
micrographs of the various formulations. It was noted that there was more homogeneity in
the pore size in the scaffolds comprised of 1% w/v chitosan and 2% w/v TPP (80–100 µm)
compared to those comprised of 1% w/v chitosan and 1% TPP (50–20 µm). The results also
showed that a higher TPP concentration and longer reaction times negatively influenced
the resulting pore structure. This is like due to strong interactions between chitosan chains
and the crosslinking agent. In addition to this, the scaffolds formulated with a chitosan
concentration of 2% w/v had a more compact pore structure and low pore interconnectivity
than the scaffolds formulated with a 1% w/v. Preliminary biocompatibility studies were
completed on one of the scaffolds (chitosan 1% w/v, TPP 2% w/v, 8 h reaction) and the
results showed good cell viability. This study illustrates how the aspects of a formulation
can be modified to suit its intended design by adjusting parameters within the formulation
processes [49].
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Figure 4. In order to view the porosity of the scaffolds formulated in this studied, SEM micrographs
were taken. The concentrations and reaction times were as follows; (A) pure chitosan 1% w/v, (B)
pure chitosan 2% w/v, (C) chitosan 1% w/v, TPP 1% w/v, 2 h, (D) chitosan 1% w/v, TPP 1% w/v, 8 h,
(E) chitosan 1% w/v, TPP 2% w/v, 2 h, (F) chitosan 1% w/v, TPP 2% w/v, 8 h, (G) chitosan 2% w/v,
TPP 2% w/v, 2 h and (H) chitosan 2% w/v, TPP 2% w/v, 8 h [49].

3.3. Hyaluronic Acid

Hyaluronic acid (HA), an anionic non-sulfated glycosaminoglycan also referred to as
hyaluronan, is ideal for use in tissue engineering systems as it is naturally found within
many connective tissues, specifically within the extracellular matrix. HA is also known
to be found within synovial fluid, the vitreous of the eye, the nervous system and the
skin. This highlights its biocompatibility and biodegradability. Other biological properties
attributed to HA include anti-inflammation non-immunogenicity. The chemical structure of
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HA, including a variety of functional groups (carboxyl, hydroxyl and amide groups) allow
for it to be easily modified to comply with the requirements of a specific tissue [50]. HA is
able to interact with a number of different cells in order to affect aggregation, proliferation
and migration [51]. Although HA has many beneficial properties, it does have some
disadvantages such as its rapid degradation and poor mechanical strength. For this reason,
many systems which incorporate HA often require chemical modifications or crosslinking
in order to overcome these challenges [52]. This biopolymer is able to be formulated into a
number of different systems including hydrogels and meshes [53].

In a study performed by Shu et al., a hydrogel film was formulated using hyaluronic
acid and gelatin [54]. Both of the polymers were chemically modified to form thiolated
derivatives (HA-DTPH and gelatiin-DTPH) before being crosslinked through a disulfide
bond. The combination of these two polymers allowed the researchers to overcome chal-
lenges seen with each polymer. The enzymatic degradation of the gelatin-DTPH film
was slowed by the addition of HA-DTPH, making them an option for long-term tissue
engineering. In addition to this, when the gelatin-DTPH was added to the HA-DTPH films,
the cell attachment to the hydrogel film surface was improved [54].

Another example of a hyaluronic and gelation combination system is that produced
by Noh et al. In that study, a hydrogel was formulated with hyaluronic acid, hydroxyethyl
acrylate (HEA) and gelation for use in bone tissue engineering, either as an injectable
system, or as a bioink for a 3D bioprinted scaffold. The hydrogel was able to be loaded with
bone cells in a viable manner, and successfully printed into a lattice form. This, coupled
with the fact that the hydrogel was rheological stable and showed good biocompatibility,
makes this system viable for bone tissue engineering [55].

3.4. Gelatin

Gelatin is a hydrolyzed collagen that has been receiving more attention recently in
terms of tissue engineering systems. This is due to the fat that although it is biocompatible
and biodegradable, in comparison to collagen it is more cost effective and has a lower anti-
genicity. As with many other polymers, gelatin is often chemically modified or combined
with other natural or synthetic polymers in order to optimize its characteristics for the
specific system [7].

The method by which gelatin is obtained from collagen; either through acid or base
treatment which leads to the hydrolysis results in either type A or type B gelatin respectively.
Each type of gelatin will have different characteristics such as gel strength, isoelectric point
and charge. For example, the isoelectric point of type A gelatin is between 8 and 9, where
it is between 4.8 and 5.4 for type B [56].

Gelatin is soluble in hot water, which gives it improved stability and therefore bioavail-
ability when it is used within the body. Researchers are also able to alter the strength of
a gelatin systems using various crosslinking methods, ranging from chemical (such as
genipin and glutaraldehyde) to physical (such as UV radiation) [57].

Gelatin systems composed for nanofibers have been successfully investigated for
tissue engineering purposes for a number of ocular tissues. This includes retinal tissues
and corneal tissues. [56] An example of such a system was developed by Xiang et al. [58].
The system was designed to mimic the Bruch’s membrane, the layer of tissue which the
retinal pigment epithelial cells (RPE) lie on within the eye. The damage or loss of these
cells in diseases such as age-related macular degeneration (AMD) is one of the leading
causes of blindness. This mimetic system, comprised of silk fibroin, polycaprolactone and
gelatin, was shown to provide a long-term platform for the sustainable growth of RPE
cells, without producing an inflammatory reaction and supporting the functionalization of
the cells [59].

3.5. Alginate

Alginates, a group of natural polymers derived from algae and bacteria, are a favorable
option for use in tissue engineering systems because they have properties which mimic
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the extracellular matrix within tissues [60]. Alginate presents with a highly beneficial
biodegradability and biocompatibility profile as well as other useful properties such as
mucoadhesion [61]. In addition to being negatively charged, alginates possess several
beneficial properties; favorable solubility profiles, suitable porosity and shear-thinning
capabilities. However, this biopolymer and its derivatives are also known to have poor
mechanical strength and biological stability. These shortfalls can be overcome by crosslining
(using either calcium, barium, magnesium or strontium ions) which increases alginates
ability to form a gel or by oxidizing the alginate [62].

Sodium alginate, along with other natural polymers, have been formulated into a
bioink designed to be used for 3D bioprinting in articular cartilage tissue engineering.
The researchers found that the mechanical strength of the system was improved by the
addition of collagen or agarose (when compared to the system with sodium alginate on its
own) [63].

Alginate has often been used in combination with other biomaterials. An example
of such a system was developed by Salehi et al., whereby alginate was combined with
chitosan in a hydrogel loaded with olfactory ectomesenchymal stem cells for the promotion
of peripheral nerve regeneration [64]. Once the hydrogel had been determined to be able to
curate cell survival, it was tested using a rat model whereby sciatic nerve damage had been
created in Wistar rats. The results of the MTT assay showed that the alginate/chitosan
hydrogel was a more suitable substrate in comparison to the control group. During
the in vivo model testing, common postoperative tests such as an electrophysiological
assessment and gastrocnemius muscle wet weight-loss was conducted, and the results
showed that the hydrogel was able to enhance the regeneration of the sciatic nerve [64].

4. Biocompatibility of Materials for Tissue Engineering Applications

One of the biggest factors that researchers need to take into account when designing
tissue engineering systems is biocompatibility. Currently, even though the transplantation
of tissues and organs from donors are widely used, patients are required to be treated with
immunosuppressants for the rest of their lives to prevent the transplant from being rejected
from the body. The development of systems which are biocompatible, biodegradable and
are composed of the patients own cells would eliminate the need for immunosuppressant
treatment [65].

There are a large number of tests which can be run in order to determine a systems
biocompatibility. These tests can be in vitro, which refers to those conducted in a culture
environment such as a test tube or petri dish, or in vivo, which refers to those conducted
within a living model (usually an animal model). There are benefits to both in vitro and
in vivo testing. In vitro studies are able to highlight the cytotoxicity and cell proliferation
capabilities of a system and are able to give a preliminary view of the biocompatibility.
In vivo studies are able to show how a system will react when placed into a body, for
example inducing an inflammatory response. It is recommended that research groups
include both in vitro and in vivo tests in their studies. This is because in vitro studies do
not provide a full analysis as they are not able to illustrate how the system will interact
with all the different cells and signaling factors that are found within the tissue [66].

Biocompatibility testing can be conducted on either on the components which make
up the system or on the process by which the system is formulated. For example, the
crosslinking agent that is used to formulate a hydrogel may negatively impact the overall
biocompatibility of the system, even if it is comprised on known biocompatible polymers.
This was shown in a study by Lai where he compared the biocompatibility of gelatin
hydrogels which were prepared using glutaraldehyde (GTA) as a cross-linker to those
prepared with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC) [67]. The study
included in vitro tests whereby rat iris pigment epithelial cell cultures were exposed to
both hydrogels for 48 h. Following this cell proliferation assays, cell viability assays as
well as pro-inflammatory gene expression tests were conducted. In vivo biocompatibility
was also tested through an animal model. Samples of the hydrogels were inserted in
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the anterior chamber of the eyes of New Zealand white rabbits. Evaluations were then
conducted at various time intervals over a 12-week period. The results showed that the
hydrogels which were prepared using EDC were more biocompatible than those prepared
using GTA. The EDC hydrogels expressed lower lactate dehydrogenase levels (this is
released through cell lysis during proliferation assays) as well as lower interleukin-1β (IL-
1β) and tumor necrosis factor-α (TNF-α) levels. In addition, the GTA hydrogels produced
a significant inflammatory response in the animal model. This study illustrates well how
biocompatibility studies are conducted [67].

5. Application of Tissue Engineering in Neurological Medicine

Tissue engineering can revolutionize the treatment of many diseases and disorder
in the neurosciences. Several advances in this area have included the repair, replacement
and regeneration of nerves, other soft tissues and organs such as the brain. The ultimate
goal is to implant therapeutics to support regeneration of endogenous cells by creating a
biomimetic environment.

5.1. Neurology

Damage to the central nervous system can occur in a number of ways. These range
from injury due to events such as car accidents and sports-related trauma, to neurodegener-
ative diseases such as Alzheimer’s disease and amyotrophic lateral sclerosis. The damage
caused by such events leaves a lasting impact on patients as the central nervous systems
has a very limited ability to self-regulate. This leaves a crucial area for investigation and
development into possible tissue engineering solutions [68].

Tissue engineering systems are able to overcome the challenges that are encountered
with autologous nerve grafts such as donor site morbidity and a limited supply of donor
nerves. Neural tissue regeneration scaffolds are required to protect the regrowth of the
nerve, particularly in the case of peripheral nervous system repair as it has a better ability
to regenerate than the central nervous system, while also allowing for the delivery of
biochemical signals. Biomaterials are able to provide the appropriate physicochemical
properties (such as porosity), biomechanical properties (such as rigidity and flexibility) and
biological properties (such as biocompatibility) [69].

In a study performed by Zarrintaj et al., a colloidal, drug-loaded hydrogel was de-
veloped with gelatin molecules and carboxyl capped aniline dimers [70]. The resulting
hydrogel was electroactive, allowing for the close mimicking of the native environment
and, in terms of neural tissue engineering, improve the response of the neural interface.
The colloidal hydrogel was shown to have an optimal range for efficient cell proliferation
and differentiation (10−7–10−3 S/cm). The electrical conductivity was also able to impact
the drug release profile. The hydrogel was able to support optimal cell viability as well.
Researchers noted that the characteristics (such as electrical conductivity and drug release
profile) of the hydrogel were tunable, allowing for future investigations of the systems to
adjust the resulting hydrogel to fit the intended characteristics. This system would be able
to serve as a robust platform for a variety of cells and tissue regeneration, in particular
neural systems [70].

The study above discussed how hydrogels may be utilized in neural tissue engineer-
ing. This is not the only system available to researchers. Saadatkish et al., illustrated how
nanofibers have the potential to act as central nervous system (CNS) tissue engineering
scaffold. The nanofibrous scaffold was developed using polycaprolactone, gelatin and
fibrinogen. The synthetic polymer (polycaprolactone) provided the scaffold with mechan-
ical strength while the natural biomaterials (gelatin and fibrinogen) provided improved
hydrophilicity and cell proliferation. More particularly, it was noted that an increase in
fibrinogen concentration allowed for higher proliferation of adipose-derived stem cells.
However, too high a concentration led to weakened tensile strength, though not enough
to impact the mechanical properties which are required for CNS tissue engineering. By
increasing the hydrophilicity of the system, the biocompatibility of the scaffold was also
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improved. It was shown that the nanofibrous scaffold provide a suitable candidate for CNS
tissue engineering applications going forward [71].

5.2. Otolaryngology

The field of head and neck surgery, including the repair of nasal, cochlear, laryngeal
and tracheal tissue, has benefitted greatly from the advancement of local flap and donor
tissue transplant technology. However, there are still challenges in this regard such as poor
donor to recipient tissue matching, lack of donor tissue and transplant rejection. Tissue
engineered systems are able to overcome these as they are able to be formulated so as to
match the patient’s tissue and thereby prevent rejection [72].

An example of a system used in otolaryngology was developed and characterized
by Ravanbakhsh et al. [73]. Carbon nanotubes were dispersed through a glycol chitosan
matrix to form a composite hydrogel. The hydrogel was investigated as a treatment option
following damage to the vocal folds which are responsible for producing the voice. Current
treatment options for this condition includes materials such as collagen, hyaluronic acid
and calcium hydroxyapatite which are injected as a synthetic extracellular matrix. However,
these are associated with adverse reactions such as granuloma formation, over-stiffening
of the material, chronic inflammation as well as low cell migration rates. The systems
developed by researchers showed that the inclusion of carbon nanotubes into the hydrogel
matrix allowed for a sizeable increase in pore size which is believed to be favorable to cell
migration. The rheology, gelation time and cell viability of human vocal fold fibroblast cells
also showed favorable results, which highlights the viability of this system as a synthetic
scaffold for vocal folds [73].

In rhinology, tissue engineering can have multiple applications. These include recon-
structive rhinoplasty, nasal septal repair and craniofacial reconstruction. The primary focus
of these procedures is on the reconstruction of the cartilage [74]. The current primary source
of cartilage is autologous grafts. However, this inevitably involves a need for additional
surgical procedures in order to harvest the tissue (typically taken from the outer ear or rib.
Synthetic implants, such as though comprised of silicone or polyethylene, are also used
but these are known to have poor integration within the native tissue and are occasionally
unnatural in appearance. In a study by Mendelson et al., a bioactive bilayered scaffold
was developed comprising of a poly (lactic-co-glycolic acid) (PLGA) base topped with
gelatin microspheres within alginate [75]. This system was developed as an alternative
to current rhinoplasty procedures. The microspheres contained cytokines (TGFβ3) which
were released over an extended period of time and promoted the growth of cartilage-like
tissue. This system is an example of a cell homing system; the cytokine response recruits
cells into the scaffold from the surrounding tissue which then differentiate accordingly [75].

The field of otolaryngology is vast and encompasses a number of tissue types within
the head and neck. Tissue regeneration systems are in development for almost all of them.
This includes the trachea. In a study by Jang et al., an electrospun polycaprolactone and
collagen nanofiber scaffold was developed. In order to encourage cell growth once the
scaffold was implanted, umbilical cord serum (which contains a number of growth factors
and serum antiproteases) was introduced. The results showed that the scaffolds treated
with umbilical cord serum had significantly higher cell viability than those which were
not treated. The scaffolds were successfully able to facilitate both cell attachment and
proliferation after seven days of cell culture. In vivo testing showed that the artificial
trachea did not cause an inflammatory response. The system also showed complete
regeneration of the tracheal wall. These results show that biomaterial nanofiber scaffolds
are a viable option, not only for tracheal reconstruction but also enhanced cartilage and
epithelial regeneration [76].

5.3. Ophthalmology

There are a wide variety of conditions and diseases which can lead to the damage of
ophthalmic tissues. These include glaucoma, diabetic retinopathy, trauma or injury and
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age-related macular degeneration to name but a few. The damage that is caused to the eye is
often irreversible and any vision that is lost cannot be recovered. Although much research
has been done into the treatment of these conditions, many of the treatment options have
risks associated with them such as redness of the eye and increased intraocular pressure.
For many years, the primary treatment for many diseased or damaged tissues within the
eye, for example the cornea, has been tissue transplants. However, this treatment method
is heavily reliant on the availability of donor tissue, which is not always readily available
and there is a history of rejection of allogenic grafts [77].

The eye is known as an immune privileged site. This means that the eye does not
launch an immune response (for example against tissue grafts) in the way that some other
organs do. Although this can be useful when it comes to introducing new substances to the
eye, it also means that they eye is not able to regenerate tissues as effectively. This is what
has led to the increased research that is being done into ophthalmic tissue regeneration
technologies [78,79].

Corneal disease is the second leading cause of blinding, following behind cataracts,
and while corneal transplant is the primary treatment option for many of these cases, a
shortage in donations leads to many patients not being able to receive this life-altering
surgery [80]. In a study performed over a 15-year period (2002–2016) in South Africa, it
was shown that there was a progressive decline in the number of corneal donors from
year to year [81]. This highlights the importance of developing systems which are able to
replace or at least, alleviate, the need for human corneal donors.

When considering tissue engineering intended for use in replacing a human cornea
the two main factors which need to be optimized: tissue strength and transparency. It is
these factors which make corneal tissue engineering the challenge that it is today [80].

The use of tissue engineering scaffolds for corneal tissues was demonstrated by
Hsiue et al., whereby human corneal endothelial cells (HCEC) were transplanted into a
rabbit cornea in the form of a cell sheet. The cell-laden disc was developed using poly(N-
isopropylacrylamide) (PNIPAAm) and gelatin. Once the disc had been inserted, results
showed that the gelatin disc was biodegraded and the cell sheet was integrated into the
cornea successfully. This shows that the administration of cell-laden scaffolds is a viable
option for the treatment of loss of corneal cell loss [82].

A further example, this time where mesenchymal stem cells were utilized, was de-
veloped by Goodarzi et al. The hydrogel system was composed of type-1 collagen and
gelatin and was designed as an artificial corneal substitute. Collagen was chosen as a
biopolymeric ingredient because it is a major component of the extracellular matrix and
thus has exceptional biocompatibility capabilities and is able to promote cell regeneration.
However, due to the high water content of pure collagen hydrogels, they have been shown
to have poor mechanical strength and rapid degradability. These factors can be overcome
either through the preparation of the hydrogel (for example using different crosslinking
methods) or by the addition of another polymer. The addition of gelatin, a biopolymer
with its transparency, biocompatibility and cell attachment capabilities, as well the imple-
mentation of zero-length EDC/NHS crosslinkers results in an adequate formulation. The
resulting formulation was shown to be biocompatible, had positive mechanical strength
and, with its porous structure, allowed for cell attachment and infiltration [83].

Retinal pigment epithelial (RPE) cells are found between the choroid and the neural
retina within the eye. This highly specialized tissue is responsible for a number of functions
including the transportation of substances such as nutrients and waste products to and
from the photoreceptor cells. RPEs can be damaged by diseases such as dry age-related
macular degeneration (AMD) which then leads to loss of vision as the RPE cells are not able
to adequately support the photoreceptor cells. Currently, the transplantation of either donor
or allogeneic RPE cells has been explored as a treatment for dry AMD. Although there have
been positive results shown, there are issues regarding the positioning of the administered
cells. It has been hypothesized that these issues may be overcome by administering cells
through hydrogels or carrier systems in order to prevent the death of cells by reflux [84].
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In a study performed by Koh et al., a corneal substitute comprised of collagen in
the form of a hydrogel was investigated. In addition to this, different crosslinking agents
were utilized and the resultant hydrogels tested, as well as the effect on the addition
of neurite promoting laminin epitope (IKVAV) and an adhesion peptide (YIGSR). The
crosslinking agent in the first hydrogel was l,4-butanediol diglycidyl ether (BDDGE) and it
was formulated at pH 11. In order to compare this with conventional methods, 1-Ethyl-
3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) which
are commonly used crosslinking agents were also used in conjunction with BDDGE). Both
crosslinking methods have previously been shown to improve mechanical properties of the
collagen hydrogels such as elasticity and tensile strength. In this study the biocompatibility
of the hydrogels was tested using human corneal epithelial cells. Confocal laser scanning
microscopes were taken of the systems after live/dead staining (Figure 5). The results
showed that the BDDGE hydrogels were non-cytotoxic with negligible dead cells indicating
that it is biocompatible and comparable to EDS/NHS crosslinked hydrogels. In those with
IKVAV and YIGSR there was increased cell proliferation but the elasticity of the hydrogels
was negatively impacted. This study shows that BDDGE is a viable crosslinking agent
from collagen hydrogels with a long gelation time that could allow for the encapsulation of
drugs within the matrix as well which would further enhance the hydrogels for corneal
substitution [85].

Figure 5. Confocal laser scanning microscope images were taken of each of the hydrogels at day 1 and day 4 with live/dead
staining. The green fluorescence shows the live human corneal epithelial cells. (scale bar = 100 µm) [85].

6. Strategies to Enhance the Bioactivity of Tissue Engineering Scaffolds

It has been mentioned that the incorporation of cells into a scaffold can be useful in
the formulation of an engineered tissue. Primarily, cells from the patient have been used in
this regard. However, researchers are now investigating the inclusion of stem cells into
scaffolds. This is to avoid the limitations seen with the use of primary cells such as their
potential to be diseased. Some stem cells that have been looked at are embryonic, bone
marrow mesenchymal and umbilical cord-delivered mesenchymal stem cells [42].

Embryonic stem cells (ESCs) have benefits such as the ability to differentiate into
multiple cell types and can also self-renew. However, there are ethical constraints which
need to be taken into account when using these cells. Mesenchymal stem cells (MSCs)
harvested from the umbilical cord blood have been shown to be a more viable option than
ESCs as these have produced teratomas in the past. MSCs are also easier to obtain as there
are cord blood banks available [86].

Adult MSCs are those which are harvested from bone marrow. Not only have they
been investigated for tissue engineering purposes in a variety of tissues including cartilage,
bone and muscle, they have also been shown to secret bioactive molecules which are able
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to encourage a self-regulated regenerative environment [87]. This means that not only
are stems cells able to not only directly differentiate and regenerate new tissues, they are
also able to regulate the immune response within the microenvironment of the damaged
tissue and improve the regeneration of the tissues. The process by which MSCs are able
to regulate the immune response is complex and involves the cell to cell contact between
MSCs and cells which exhibit immunosuppressive properties [88].

While stem cells are able to provide an option for the development of new tissues,
the transplantation of these cells on their own have shown poor viability and lowered
regenerative capabilities. This opens the door for the further development and research into
the tissue engineering scaffolds and systems which have been discussed in this article [89].

The incorporation of MSCs in a tissue engineering system was illustrated by Weinstein-
Oppenheimer et al. The system, designed as a wound dressing system was formulated
using gelatin, chitosan and hyaluronic acid to form a hydrogel. The resulting hydrogel
had a porous scaffold which encourages the regeneration of cells. The system was tested
both using an in vitro model using human cells as well as an in vivo model using rabbits.
It was also applied to a single human case using autologous MSCs. Throughout the
in vitro, in vivo testing and the human case, the system was shown to be biocompatible,
had biodegradability capabilities (ranging between 1 to 2 weeks in the rabbit model and
partial biodegradation after one week in the human model), good cell viability (99.5% after
one week during in vitro testing) and an absence of rejection evidence in both the rabbit
and human model [90].

In addition to the incorporation of stem cells, there are alternative methods which
can increase the bioactivity of a scaffold. One such strategy is the utilization of materials
which are better able to interact, or in some cases, bind with the tissue. This allows for
improved cell growth and more stable anchoring of the scaffold to the tissue into which
it is placed. This is of particular importance in bone tissue engineering systems. These
materials are able to exhibit conductive properties and transmit biological cues, including
growth factors [91].

It is also possible to improve the bioactivity of a scaffold by altering the biomaterials
to mimic the extracellular matrix (ECM) more similarly. This can be done by modifying
polymers with ECM-derived bioactive molecules, such as signal molecules. Proteolytic
degradation and cell adhesion could also be used to improve the bioactivity of a material
before it is incorporated into a tissue engineering system [92].

The choice of the structure which is being used to formulate a tissue engineering
scaffold can also have an impact on how it interacts with the tissue into which it is placed.
For example, nanofibers are able to closely mimic the morphology and structure of the
ECM. This allows for better proliferation of cells through the scaffold and thus increasing
the bioactivity of the system. For example, nanofibrous scaffolds have been formulated
using poly (l-lactic acid)-co-poly (ε-caprolactone) and gelatin. The scaffolds were then
plasma treated. Results showed that the plasma-treated scaffold was able to support
the proliferation of fibroblasts as well as the secretion of collagen. This bioactive ability
highlighted the suitability of nanofibrous scaffold for skin tissue engineering purposes [93].

7. Future Prospects

As has been discussed throughout this article, many studies are being performed in
the field of tissue engineering. However, there is still more research that needs to be done,
both within the general field and within the avenues of each specific tissue. For example,
although many examples of innovative cartilage tissue regeneration systems have been
mentions, unless these are further developed into accessible, simple and, most importantly,
cost-effective systems, it is likely that surgeons will continue with the traditional treatment
methods that are currently being used. In some cases, more extensive research is required in
order for these systems to be on mechanically on par with native cartilaginous tissues [94].

Part of the further development of tissue regenerative systems is reliant on a deeper
understanding of the processes by which these systems are formulated such as the explo-
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ration of in situ bioprinting. This would allow for scaffolds to be printed directly into the
damaged site of a living model. Limited research has been done into this using inkjet-based
bioprinting and laser-based bioprinting. It is believed that in using in situ bioprinting,
native cells will be able to interact with the printed tissues and vice versa as it is being
created for improved acceptance of the scaffold. This is an intriguing concept which could
provide major benefits to tissue engineering science [95].

The progress that has been made in terms of in vitro tissue engineering in recent
years has aided in the development of more novel biomaterial systems. The use of these
components has allowed for the formulation of systems that are safer in terms of producing
an immune response [96]. Researchers are able to enhance the full benefit of these materials
in tissue engineering studies going forward.

Many of the studies which are mentioned in this article, though successful, are pri-
marily proof of concept studies. There are some systems which have been tested in animal
models but these need to be furthered in human testing and clinical trials. Animal model
studies are able to confirm the way in which the tissue engineering systems reacts within
an in vivo. The results of such studies provide researchers with a further insight into both
the biocompatibility and biodegradability [97].

Once these further studies are completed successfully, the next challenge lies in how
to evolve the working formula into a viable healthcare technology. The main complication
in this is how to upscale the in many cases highly specific scientific process into a product
which can be produced on a mass scale. Although some systems have made it to the
market, it is currently a very small percentage of those which are being developed. There
is much work that needs to be done in order for tissue engineering systems to meet the
current demand [98].

8. Conclusions

There is much research being done into the field of tissue engineering. The variety of
different systems and scaffold which are available to researchers have allowed them to be
able to design systems which can be finetuned to suit the specific needs of the tissue type
and site. This could include adequate mechanical strength for bone tissue engineering or
flexibility for soft tissues.

The recent success of the tissue engineering developments has been made furthered
even more by the incorporation of biopolymers. These systems are able to be formulated in
such a way that they are biocompatible, which is a major influence on the success of the
system. The cost effectiveness of biopolymers and the fact that they are readily available
also make them ideal for use in these systems. They are able to be used in combination to
highlight certain qualities that are favorable to the desired characteristics.

The recent successes of tissue engineering systems in furthered by the inclusion of
stem cells. Although there are ethical considerations with the implication of stem cells, they
provide promising results in terms of tissue regeneration. Further enhancing the research
and utilization of stem cells is a promising step for the field of tissue engineering.

One of the tissue systems which can especially benefit from the advances in tissue
engineering technology is the eye. These new systems are particularly beneficial due to the
fact that the eye is an immune privileged site which does not regenerate cells effectively.
The developments being made are able to create an alternative to donor transplants which
are very limited in numbers.

Although more research is required, the work that is being done in both tissue regen-
eration and biopolymer science is promising and could have a positive impact on many
lives around the world.
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